

International Conference Wastewater Management in Arid and Semi-Arid Regions as a Mitigation **Measure to Combat Climate Change**

14 – 17 March 2022

Kuwait Institute for Scientific Research, Kuwait City, Kuwait

Conference Program and Abstract Proceedings

kisrofficial

24989000

www.kisr.edu.kw

Scope of the Conference

Scarcity of fresh water resources in the GCC countries and the Arab World at large has become a critical challenge to development and livelihoods. Exacerbated with climate change, this challenge is affecting viable sectors such as the industrial, agricultural and touristic activities to name a few. Therefore, proper mangement of wastewater streams in this semi-arid region will help development region wide.

Wastewater is collected, treated and mange for its reuse potential as an integral component of Integrated Water Resources Management (IWRM). Management can be centralized and/or decentralized in view of local conditions and socio-economic opportunities and challenges. In arid and semi-arid regions, the reuse/recycle wastewater both domestic and industrial is indispensable to help gap the deficit between demand and supply of fresh water resources. In an era when climate change is already, taking place and its extreme events are widely noticed, careful management and reuse of wastewater stand as a significant adaptation option for climate change impacts on water resources.

WTRT Program of WRC at KISR plans to organize a 4-day international/regional conference to address the following main themes of wastewater management in arid regions:

- New advances in domestic wastewater technologies.
- New advances in industrial wastewater treatment and resource recovery.
- Decentralized management of wastewater.
- Wastewater reuse as an adaptation for climate change.
- Management of sewage collection/transfer infrastructure under extreme hydrological events.
- Viruses removal from wastewater

Conference Committees			
ORGANIZING COMMITTEE			
Dr. Adel Al-Haddad, PM/WTRT-WRC	Chairman		
Dr. Mohamed Elmuntasir Ahmed, WRC	Co-Chairman		
Dr. Mishari Khajah, WRC	Member		
Dr. Hussain Abdullah, WRC	Member		
Mr. Ali Al-Dawoud, MPID	Member		
Ms. Sara Al-Sultan, MPID	Member		
Mr. Nawaf Al-Otaibi, MPID	Member		
Ms. Muneerah Al-Khaled, MPID	Member		
Ms. Razan Behbehani, Finance Division	Member		
Ms. Seham Al-Salem, NSTIC	Member		

Dr. Mohamed Elmuntasir Ahmed, WRC	Chairman	
Dr. Adel Al-Haddad, PM/WTRT-WRC	Member	
Mr. Adnan Akbar, WRC	Member	
Dr. Abdallah Abusam, WRC	Member	
Dr. Hussain Abdullah, WRC	Member	
Dr. Abdullah Al-Matouq, WRC	Member	
Dr. Mishari Khajah, WRC	Member	
Dr. Amjad Aliewi, WRC	Member	
Dr. Yousef Al-Wazzan, DD-STD/WRC	Member	
Dr. Mansour Ahmed, PM/WDT-WRC	Member	

Conference Secretariat		
Ms. Nikhila Sukumar, WRC		
Ms. Samah Metwally, WRC		
Ms. Leila Hussein Serhan, WRC		

Opening Program

Under the patronage of His Excellency the Minister of Education, Minister of Higher Education and Scientific Research - Chairman of the Board of Trustees of Kuwait Institute for Scientific Research

Dr. Ali Fahad Al-Mudhaf

the Kuwait Institute for Scientific Research

is pleased to invite you

to attend the Virtual International Conference

Wastewater Management in Arid and Semi-Arid Regions as a Mitigation Measure to Combat Climate Change

Monday, 14 March 2022

09:00 – 10:00 a.m.	Registration
10:00 – 11:00 a.m.	National Anthem The Holy Quran Opening Speech: H.E. Dr. Ali Fahad Al-Mudhaf, Minister of Education, Minister of Higher Education and Scientific Research- Chairman of the Board of Trustees of Kuwait Institute for Scientific Research
	Conference Program
	Day One: Monday, 14 March 2022
09:00 – 10:00	Registration
10:00 – 11:00	Opening Ceremony
11:00 – 11:30	Refreshment Break
Session 1: Wastew	rater Reuse
Session Chair/Mo	derator: Mr. Adnan Akbar
12:00 – 12:30	Dr. Mohamed A. Dawoud, Environment Agency, UAE, The Role of Wastewater Reuse in GCC Countries Water Sustainability (Paper ID # 10)
12:35 -13:05	Eng. Huda Al Lanqawi, Ministry of Public Works, Kuwait, Kuwait Wastewater Strategy (ID # 19)
13:10 – 13:40	Mr. Adnan Akbar, Kuwait Institute for Scientific Research, Kuwait, Managed Aquifer Recharge (MAR) Using Membrane Treated Municipal Wastewater: A Possible Solution for Kuwait's Current and Future Water Needs (Paper ID # 2)
13:45 – 14:15	Mr. Hamed Al-Mazidi , Kuwait Oil Company (KOC), Kuwait, Utilizing Rejected Stream from Sulaibiya Wastewater Treatment & Reclamation Plant for KOC Industrial Applications, Case Study (Paper ID # 16)
14:20 -14:40	Dr. Mohamed Taieb Labiadh, Arid Regions Institute – Tunisia, Olive Mill Wastewater for Degraded Soil Restoration (Paper ID # 1)

Day Two: Tuesday, 15 March 2022

Session 2: Wastewater Treatment

Session Chair/Moderator: Dr. Adel Al-Haddad

10:00 – 10:30	Mr. Adnan Akbar, Kuwait Institute for Scientific Research, Kuwait. Augmentation of Kuwait's Usable Water Resources by Unconventional Soil Aquifer Treatment (SAT) Technique (Paper ID# 14)
10:35 – 11:05	Mr. Saleh Al-Haddad, Kuwait Institute for Scientific Research, Kuwait. The impact of enzymatic hydrolysis of sewage sludge as a pre-treatment for dark fermentation (Paper ID # 18)
11:10 – 11:40	Eng. Ohoud Bushaibah, Kuwait Institute for Scientific Research, Kuwait. Preliminary Assessment of Wastewater Quality near Emergency Outfalls in Kuwait's Bay (Paper ID # 7)
11:45 – 12:15	Dr. Mishari Khajah, Kuwait Institute for Scientific Research, Kuwait. Characterization of Reverse Osmosis (RO) Reject Wastewater Generated from Sulaibiya Wastewater Treatment Plant (Paper ID # 5)

Prayer & Refreshment Break

Session 3: Wastewater Treatment

Session Chair/Moderator: Dr. Abdallah Abusam

12:30 - 13:00	Dr. Viruthachalam Thiagarajan , Bharathidasan University, India, Magnetic iron oxide nanoparticles-based nanocomposites for wastewater remediation (Paper ID # 20)
13:35 – 14:05	Dr. R. Arthur James , Bharathidasan University, India, Natural Nano-structures designed for Biofilm Management in Wastewater Treatment Industries (Paper ID # 9)
14:10 - 14:40	Dr. A. Al-Haddad , Kuwait Institute for Scientific Research, Kuwait, Coliphage Viruses Removal from Treated Wastewater Using Gravely Sandy Columns, Kuwait (Paper ID # 12)
14:45 – 3:15	Dr. Abdullah Al-Matouq , Kuwait Institute for Scientific Research, Kuwait, Assessment of Volatile Organic Compounds Removal in Kabd Wastewater Treatment Plant (Paper ID # 17)

Day Three: Wednesday, 16 March 2022		
Session 4: Industrial Wastewater Treatment		
Session Chair/Mod	derator: Dr. Abdullah Al-Matouq	
10:00 – 10:30	Dr. Mahalakshmi Mathivanan, SASTRA University, India. Removal of dye from textile effluent using Saccharomyces Cerevisiae (Paper ID # 3)	
10:35 – 11:05	Dr. Kuppusamy Vaithilingam Selvakumar, Dire Dawa University Institute of Technology, Dire Dawa, Ethiopia, Electrochemical reduction of Cr6+ ions from effluents by three-dimensional cathode reactor (Paper ID # 4)	
11:10 – 11:40	Dr. Andrzej Mydlarczyk , Poland, Evaluation of Wastewater Quality Generated by Hospitals, which is Discharged into Public Sewage Network in Kuwait (Paper ID # 8)	
11:45 – 12:05	Dr. Dhanu Radha, S.V.V, Kuwait Institute for Scientific Research, Kuwait, Efficacy of Nanoparticles in Removing Targeted Bacteria from Wastewater (Paper ID # 6)	
Day Four: Thursday, 17 March 2022		
Session 5: Onsite	Wastewater Treatment	
Session Chair/Moderator: Dr. Mohd Elmuntasir Ahmed		
10:00 – 10:30	Dr. Mohd Elmuntasir Ahmed, Kuwait Institute for Scientific Research, Kuwait, Multi-criteria Assessment of Onsite Packaged Wastewater Treatment Systems (Paper ID # 15)	
10:35 – 11: 05	Dr. Hussain Abdullah, Kuwait Institute for Scientific Research, Kuwait. Performance Evaluation of Commercial Package Systems used in Kuwait for On-Site Treatment and Reuse of Domestic Wastewater (Paper ID # 11)	
11:10 – 11:40	Ms. Fatemah Dashti, Kuwait Institute for Scientific Research, Kuwait, Assessment of Removal Salmonella Bacteria from Domestic Wastewater Biological Treatment Unit (Paper ID # 13)	
11:45 – 12:15	Ashraf A Ramadan , Kuwait Institute for Scientific Research, Kuwait, Assessment of Kuwait's Wastewater Treatment Plants Emissions (paper ID #21)	

Conference Abstracts			
Day 1			
		Session 1: Wastewater Reu	use
Sl.No.	Abstract Title	Authors	Affiliation
1	The Role of Wastewater Reuse in GCC Countries Water Sustainability	Mohamed A. Dawoud1, Hatem Abdel Rahman2	(1)Water Resources Advisor, Environment Agency, Abu Dhabi, P.O. Box 45553, Email: mdawoud@ead.ae (2) Professor, King Abdul Aziz University, KSA
	Abstract Gulf Cooperation Council (GCC) co economic, social and environmental bodies. This lead to over pumping table, increase its salinity, depletion water demand which lead to invest and reuse. Increasing water dema costs and environmental impacts developing interventions to minimi area of 2.7 million km ² , with a comb meters, out of them over 27,800 m treated wastewater. The total prese annually. The predicted production treated wastewater for irrigation, a freshwater stress and water scarcity political will, sound policies, strate needed and extremely essential par cost-effective treatment options an future statues of treated wastewater recommend the future way forward	puntries faces the challenges of fresh al development. In GCC countries, the of nonrenewable groundwater aquif a, as well as ecological degradation. In ment more in non-conventional wate and, scarcity of renewable freshwat have prompted many governments ize the increasing gap between freshwat have prompted many governments ize the increasing gap between freshwat have population over 50 million in 20 million cubic meter is from nonrenew ent (2015) production of treated was of treated wastewater will be about equifer recharge, district cooling and y as part of an Integrated Water Resour- egies, regulatory framework, finance rameters for future success. Risks due nd alternatives depending on the end er production and reuse and how car d.	hwater resources scarcity which pose severe constraints on are are no available permanent renewable surface freshwater fer systems which has resulted in lowering the groundwater the last three decades GCC countries have witnessed growing er resources such as desalination and wastewater treatment er resources, groundwater deterioration, and desalination to seek more efficient treated wastewater reuse to support water supply and demand. GCC countries occupy a total land 14. The total water uses in GCC is about 35,100 million cubic rable aquifers, 5,100 from desalination and only 2,200 from tewater 4,000 million cubic meter and it is increased by 11% 17,000 million cubic meters by 2030. The extended reuse of other purposes could contribute considerably to reduce the urces Management (IWRM) approach. For this to be achieved, ed plans of action and cooperation platforms are urgently e to any environmental impacts should be addressed through d users requirements. This paper will analyze the present and n help in long term water sustainability in GCC countries and

Keywords: TSE, wastewater, water quality, water stress, groundwater depletion, desalination.

2	Kuwait Wastewater Strategy	Eng. Huda Al Lanqawi	Ministry of Public Works (MPW) Contact No. 99785889	
	Presentation highlights: 1. Sanitary Engineering Strategy in MPW 2. Kuwait P.S & WWT Planet 3. Wastewater Treatment Phases 4. Technologies used in Treatment Plant 5. Wastewater Reuse 6. Future Projects			
3	Managed Aquifer Recharge (MAR) Using Membrane Treated Municipal Wastewater: A Possible Solution for Kuwait's 			
	Abstract Kuwait is a water-starved country with only minor natural fresh and brackish groundwater accumulations at its disposal. The fresh groundwater reserve in the northern part of the country is about 100 Mm ³ which is equivalent to about 50 days of consumption at the current rate and is set aside for emergency use. Desalination of seawater meets almost all freshwater needs of the country. Seawater desalination is, however, a costly and environmentally unfriendly process and as the demand for water increases, desalination capacity needs to be increased at regular intervals to keep pace with the demand. Also, desalination plants are vulnerable to various accidental mishaps such as mechanical failure, shortage of fuel supply and pollution of intake water as well as subversive activities. Aquifer water storage and recovery (ASR), also known as managed aquifer recharge (MAR), is becoming a widely used tool for the integrated management of the available water resources around the world. The technique is being used for a wide range of purposes such as augmentation of depleting groundwater reserves due to exploitation, improvement of groundwater quality, countering seawater intrusion, smoothening of seasonal variation in water demand and creation of a strategic water reserve for use during an emergency. For an arid country like Kuwait where natural useable water is in short supply, MAR can be an answer to confront all of the above problems. The reverse osmosis (RO) membrane treatment of municipal wastewater currently yields very high-quality water in Kuwait with an estimated current production of 425,000 m3/d that is expected to reach 600,000 m ³ /d by 2030. A large part of this high quality water will remain unutilized, especially during the winter months. This water can profitably be used to recharge the groundwater aquifers and hence can provide an additional source of water to meet Kuwait's current and future needs.			

4	Utilizing Rejected Stream from Sulaibiya Wastewater Treatment & Reclamation Plant for KOC Industrial Applications, Case Study	Hamed Al-Mazidi1, Saja Al-Mass, Imad Al-Maheimid, and Abdullah Bushehri	Imad Maheimid Kuwait Oil Company (KOC) TPL Senior Specialist (Res & Petroleum Engg) Innovation & Technology Group KOC, Ahmadi Email : (1) HMazidi@kockw.com (OR) IMaheimid@kockw.com
	Abstract		
	As the state of Kuwait is located in	an arid climatic area (rainwater 110	0 ml / year) which is affected by a water shortage, especially
	shortage in the water intended for industrial applications. Therefore, in this particular climatic context, treating, reuse and utilizing		
	any available source of wastewater will partially overcome Kuwait Oil Company, KOC future industrial water demands and protect		
	Kuwaiti environment. The rejected Reverse Osmosis (RO) wastewater stream (Brine) from Sulaibiya Waste Water Treatment & Reclamation Plant was identified as a sustainable source water for KOC industrial applications. Treating of this rejected stream will not only overcome KOC future industrial and low salinity water demands but also would protect public health and Kuwaiti environment.		
	To conclude whether this rejected stream will be suitable and can be utilized in KOC assets, a pilot plant was successfully implemented		
	to treat this rejected stream (Brine) from SWWT&RP, this second generation of wastewater is currently dumped in Kuwaiti seashore		
	after primary treatment, this rejected wastewater could have a negative impact in Kuwait marine live.		
	The objectives of the pilot project was to select an innovative and cost-effective technology to treat the rejected stream from		
	Sulaibiya Waste Water Treatment and Reclamation Plant SWWT&RP. The pilot trial was successfully completed and the results		
	were very encouraging. The implemented technology can be scaled up to treat 300,000 barrels /day of wastewater; moreover, this		
	technology can be implemented to	ο treat any wastewater within or οι	utside KOC assets.
	Keywords: Wastewater, Sewage, Treatment, Sulaibiya Waste Water Treatment & Reclamation Plant SWWT&RP.		

5	Olive Mill Wastewater for Degraded Soil Restoration	M. T. Labiadh	Dr. Mohamed Taieb Labiadh Arid Regions Institute - Tunisia 4119 Medenine, Tunisia. Email: Mohamed.labiadh@ira.rnrt.tn Phone: +216 75 633 005, Fax: +216 75 633 006 mohamed.labiadh@ira.rnrt.tn
	Abstract In Southern Tunisian arid regions, the main issues of soil degradation on the surface by wind erosion (loss of nutrients and organic matter) and in depth by reduction of water reserves were diagnosed. In order to preserve these soils, improve biological activity and		
	maintain their productivity, a restitution of organic amendments becomes necessary. Among the remedial solutions, the composting of olive tree by-products (Ramial Chipped Wood (RCW), Olive Mill Waste Water (OMW)) could be used for these soils. In this context, an experiment in pots was carried out on Medicago sativa L. in order to evaluate the effects of compost on ecosystem		
	services of a sandy soil sampled from an experimental olive orchard in Chammakh. Two treatments (RCW and RCW with OMW) were applied and compared to a control soil. The results showed that RCW was the most effective treatment for improving soil phosphorus properties and above-ground biomass. The highest nitrogen content is recorded with the composite compost (RCW and OMW) (0.26 g kg-1). The Electric Conductivity of treated soil decreased by 60% over time. The RCW compost and the RCW combined with OMW		
	allowed to keep almost the same soil moisture (141.10 and 147.23 g kg-1, respectively) but almost 3 times more compared to a control soil (52.30 g kg-1).		
	Keywords: Olive tree by-products, compost, sandy soil, Medicago sativa L., ecosystem services.		

Day 2				
Session 1: Wastewater Treatment				
6	Augmentation of Kuwait's Usable Water Resources by Unconventional Soil Aquifer Treatment (SAT) Technique	A. Akber and A. Al-Haddad	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: akbar@kisr.edu.kw	
	Treatment (SAT) Technique Abstract The absence of natural surface water resources, extremely low natural groundwater reserves, harsh climatic conditions and dependence on the environmentally unfriendly and costly seawater desalination technologies to secure the freshwater needs of the country pose a serious threat to Kuwait's prosperity and wellbeing. The magnitude of the problem is further exasperated by population growth and agricultural and industrial expansions. Treated wastewater is a promising source of water that can increase Kuwait's usable water supply and thus can contribute to adjusting the country's water balance. Despite Kuwait's extremely low natural water reserves, less than 50% of its wastewater is reused, especially in agricultural and greenery landscaping activities. Soil aquifer treatment (SAT) is a low-cost process for the improvement of the quality of wastewater as it infiltrates through the soil. This study was carried out to investigate the changes in the quality of treated wastewater as it infiltrates through the soil and its effects on the groundwater quality, soil chemistry, hydraulic conductivity, plant growth, crop productivity and the concentrations of various trace and minor elements in one of the major local farms in the Sulaibiya area that has been using treated wastewater for crop irrigation purposes for the past three decades. The study results suggest that SAT process can work reasonably well in Kuwait for the renovation of the secondary/tertiary treated wastewater if an area with suitable soil characteristics and hydrogeological conditions is selected for its implementation. This will, in turn, provide an additional source of water for agriculture and other non-potable uses. The study results also suggest that a good quality water mound has been created under the central part of the farm by almost three decades of irrigation with treated wastewater which is expected to augment the brackish/saline			

Keywords: Treated wastewater, infiltration, soil, hydrogeological, prosperity, and water balance.

7	The impact of enzymatic hydrolysis pre-treatment on enhancing glucose and bio- hydrogen production from sewage sludge	Saleh Al-Haddad, M. A. Camargo-Valero, L. Fletcher	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: shaddad@kisr.edu.kw		
	Abstract				
	Sewage sludge is processed for n	nethane production in anaerobic dig	estion reactors at wastewater treatment plants around the		
	world. And it is produced in large	quantities and is rich in biodegradab	le organic materials, and from these contents, sugars (e.g.,		
	glucose) can be produced, recover	ed and used as a substrate to suppo	rt hydrogen production through the dark fermentation (DF)		
	process. Champagne [1] reported that 6.22 Mt/yr of sugar can be produced from municipal sludge and livestock manures generate				
	Canada. DF is one of several metho	ds used for bio-hydrogen production,	whereby fermentative bacteria are used to hydrolyse organic		
	substrates to produce hydrogen ga	as. As one of the main fermentable su	ubstrates for hydrogen production is carbohydrates (sugars),		
	as they are considered the most favourable substrate for fermentative bacteria (e.g., Clostridium bacteria)[2]. Several studies have				
	reported high hydrogen production in DF processes using sugars such as glucose as substrate [3-5]. Although the current routes fo				
	sewage sludge processing at wastewater treatment plants use AD, there is still an opportunity to move towards sugar production t				
	support biohydrogen production. T	The result shows that using enzymatic	hydrolysis (EH) process as pre-treatment for sewage sludge,		
	has enhanced the glucose content	in sewage sludge and convert some o	f macro sewage flocs to easy digestible micro flocs (glucose).		
	And therefore, the substrate was m	nore favourable and easier to digest b	y bacteria in dark fermentation reactor which led to enhance		
	hydrogen and VFAs production. Mo	pre research needs to be done to find t	he optimum enzyme dosage, initial substrate concentration,		
	operation temperature (especially when enzyme is used inside DF reactor).				

8	Preliminary Assessment of Wastewater Quality near Emergency Outfalls in Kuwait's Bay	O. Bushaibah, A. Al-Haddad, M. Khajah, F. Dashti, E. Ibrahim	Environmental and Life Sciences Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: ashaiba@kisr.edu.kw	
	Abstract			
	A total of Twenty-two wastewater discharging emergency outfalls located within Kuwait Bay has the potential ability to pollute mar			
	life, the quality of wastewater discha	arged to the sea has a direct significar	nt impact on the ecosystem including marine organisms, and	
	an indirect effect on human health.	The aim of the current study is to eva	aluate the quality of wastewater discharged at selected sites	
	of Kuwait's Bay and to compare th	e obtained results with Environment	tal Public Authority (EPA) standards for discharging treated	
	wastewater to Kuwait Bay. Five loca	tions were selected near emergency o	outfalls and onsite field measurements for water quality were	
	carried out, including temperature, pH, Electrical conductivity (EC), and dissolved oxygen (DO). Furthermore, a total of fifteen mi			
	water samples (Wastewater and seawater) were collected throughout November 2021 and January 2022 during low and high			
	and within one meter away of wastewater discharging outfalls and analyzed for nutrients, heavy metals, and bacteria parame			
	The field results indicated presenc	e of slightly alkaline (pH,7.01-8.0),	freshwater to saline water type (EC, 1.27 µs/cm - 65.07µs/	
	cm) oxidized environment (DO, 0.9	1 mg/l - 5.28 mg/l). The laboratory r	esults of water samples revealed that the concentrations of	
	nutrients (total nitrogen, 2.0 - 35 m	ng/l), and all targeted heavy metals w	vere detected in mixed samples for all sites in concentrations	
	of microgram per liter and within EP	A acceptable limits. On the other har	nd, phosphate concentration (4.2 - 13.6 mg/l) and the counts	
	of microbial indicators (Fecal colifo	orm, E. coli, and Fecal Streptococci) w	vere high and above EPA standards, which show the serious	
	biological pollution that occurred I	to these sites. The variation in the c	ontamination levels at the selected locations indicates the	
	need for periodic monitoring for mi	xed water quality near wastewater en	nergency outlets and searching for the appropriate solutions	
	to reduce the contaminated wastev	water discharged directly into the be	aches.	
	Keywords: Environmental, Heavy metals, microbial, nutrient, water samples			

9	Characterization of Reverse Osmosis (RO) Reject Wastewater Generated from Sulaibiya Wastewater Treatment Plant	Mishari Khajah, Mohd Elmuntasir Ahmed, A. Al-Matouq	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: mkhajah@kisr.edu.kw	
	Abstract			
	Sulaibiya wastewater treatment plant is considered as one of the largest wastewater treatment plant using ultrafiltration and reverse			
	osmosis membranes in their processes to reclaim water for indirect potable water reuse from municipal wastewaters. An additional			
	waste stream is generated compos	ed of the reject of the membrane tr	eatment or the brine, which includes contaminants such as	
	include nutrients, trace organic chemicals, effluent organic matter and pathogens. Many of the organics that are concentrated ir			
	these brines are of considerable concern and can hinder the beneficial use of reclaimed water concentrate. Currently, there are no			
	legally binding regulatory guidelines for brine management in Kuwait as in many countries around the world such as the United			
	States, Australia, and Spain. There are presently no specific government regulations or regulatory guidelines containing technical			
	requirements, recommendations, a	nd engineering guidance for permit	ting brine discharges. This paper studies the characteristics	
	of the reverse osmosis (brine) waste	ewater generated from the Sulaibiya	wastewater treatment plant. The main aim is to characterize	
	and understand the variation of the	e quality of the brine wastewater dis	charged from the plant.	

Day 2					
	Session 2: Wastewater Treatment				
10	Magnetic iron oxide nanoparticles based nanocomposites for wastewater remediation	Ramalingam Suhasini ¹ , Vetrimurugan Elumalai ² , Viruthachalam Thiagarajan ^{1*}	Photonics and Biophotonics lab, School of chemistry, Bharathidasan University, Tiruchirappalli- 620 021, India 2 Department of Hydrology, University of Zululand, Kwa- Dlangezwa, 3886, South Africa. E-mail: v.thiagarajan@bdu.ac.in		
	Abstract Water, a valuable, precious and demanding source on earth, needs a suitable remediation for global welfare. Normally, dedicated wastewater treatment plant requires pre-treat industrial wastewater. On the subject of sustainable, economic development, new technologies for the treatment of impaired and unconventional water are crucial. Magnetic materials which play a main role in water remediation based on their magnetic, surface functionalisation and recovery properties. Magnetic iron oxide nanoparticles (MINOPs) provide robustness in stability, eco-friendly and relative in economical relevant solutions. The nanomaterial's small size, large surface area, mobility in solution and easy separation make them highly as a significant materials for water remediation applications. 1 In this presentation, we will briefly discusses about the source of water pollutants, methods available for water remediation, structure and properties of magnetic materials and their applications towards wastewater treatment including zero-valent metal nanoparticles,				

11	Natural Nano-structures designed for Biofilm Management in Wastewater Treatment Industries	R. Arthur James, K. Muthukumar, S. Henciya and Hans Uwe Dahms	Department of Marine Science, Bharathidasan University, Tiruchirappalli – 620 024, India. Email: james@bdu.ac.in	
	Abstract Biofilm has become one of the worldwide most serious environmental problems and so far, the most effective method to control is base on the application of toxic antifouling coatings like tributyltin (TBT), copper or organic compounds and other toxic materials. Effect ascribed to the presence of tributyltin and toxic materials in the environment are acute toxicity, results in imposex, bioaccumulation increased shell thickness, leading to a serious ecological crisis and decreases reproductive viability of various organisms.			
	Currently, a novel and green photocatalytic technology based on semiconductors has attracted great concern towards p application in the degradation of organic pollutants, antifouling, hydrogen productions from water and disinfection. Eco- products with anesthetic, repellent and settlement inhibition properties, without being biocidal to non-target organic desirable as potential antifoulants. Development of reliable non-toxic methods for the synthesis of nanoparticles (NPs) v important booming field of bio-mimetic which allows one to mimic nature. Biosynthesis of bio-mimetic NPs or bimetallic nanocomposite is an important eco-friendly benign source for beneficial aspects in the ecosystem. Inspired from natur reveals excellent super hydrophobicity implemented bio-mimetic super hydrophobic surfaces in a variety of simple ways. S have been attracted broad attention towards new NPs and Bi-NPs composite of photocatalytic activity and biocides which new elastomeric coatings for antifouling and foul-release formulations.			
	Multifunctional NPs composite pho used in photocatalysis and effective degradation of organic pollutants	otocatalytic activities, coatings are i ve non-biocidal coatings. These find and antifouling coatings for the enti	n urgent demand for the emerging fields which was further ings would results in patent value with natural eco-friendly ire scientific world in near future.	
	Keywords: Nano-structures, Wastewater, Biofilm, Antifouling, Natural treatment.			

12	Coliphage Viruses Removal from Treated Wastewater Using Gravely Sandy Columns, Kuwait	A. Al-Haddad	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: ahadad∂kisr.edu.kw
	Abstract		
	A research study was carried out to	determine soil type of gravely sand	y for removal of Coliphage viruses from treated wastewater.
	Treated wastewater containing viru	ises was passed through soil columr	ns filled with soil collected from Sulaibiya area, Kuwait. The
	two soil column experiments were	under operation for eight months du	ring period from August 2004 to March 2005. The first and
	second soil columns filled with grav	ely sandy soil. All soil columns had so	oil depth of 0.1 m and with constant hydraulic head of 0.1 m
	above soil surface. For each experimental condition, two identical columns were set up, so that the reproducibility of the results car		
	be evaluated. For all columns, the tests were conducted under alternating 1 day flooding and 1 day drying conditions. Influent and		
	effluent water samples were collected and analyzed following cycles of flooding periods. The Coliphage virus counts in the treated		
	wastewater ranged between 0 and	62800 pfu/100 ml. The laboratory re	sults revealed that Coliphage removal for gravely sandy soil
	ranged between 10 and 100% with	average value of 75.5%. The preser	nce of clay in the soil increased the Coliphage removal from
	treated wastewater.		
	Keywords: Coliphage viruses, Trea	ted wastewater, Soil Column experi	ments, effluent

13	Assessment of Volatile Organic Compounds Removal in Kabd Wastewater Treatment Plant	Abdullah Almatouq, Mohd Elmuntasir Ahmed, Mishari Khajah, and Rashed AlYaseen	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: amatouq@kisr.edu.kw	
	Abstract			
	Volatile organic compounds (VOC	s) are highly reactive hydrocarbons	that are characterized by low water solubility. There are	
	common compounds that can be f	found in every wastewater treatmen	t plant around the world such as toluene, benzene, xylene,	
	1, 3, 5 trimethylbenzene, 1, 4 dichl	orobenzene, dichloromethane, chlor	oform, and tetrachloroethene. The concentrations of these	
	VOCs in wastewater may vary depe	nding on the treatment plant's oper	ational conditions and temperature. In this study, the most	
	common volatile organic compounds in wastewater (toluene, benzene, xylene, 1, 3, 5 trimethylbenzene, 1, 4 dichlorobenzene			
	dichloromethane, chloroform, and tetrachloroethene) were identified and quantified using gas chromatography coupled to mas			
	spectrometry (GC/MS) in 140 wastewater samples from 4 sampling points (inlet, pre-aeration tank, aeration tanks, outlet) in Kabo			
	wastewater treatment plant. Waste	water samples from the selected loca	itions were collected once a week for more than ten months.	
	The results showed that the overall removal efficiency for dichloromethane, toluene, Tetrachloroethene, 1,4-Dichlorobenzene was			
	33.3, 100, 89.4 and 49.0 % respectiv	vely. For the other compounds such as	M-Xylene, P-Xylene and O-Xylene, since the concentrations	
	were very low the VOCs were not o	detected in the effluent neither with	in the treatment scheme. Surprisingly, It was noticed that	
	chloroform has a negative overall	removal efficiency. Due to VOCs vol	atilization, some VOCs we completely removed during the	
	primary treatment such as letrachi	loroetnene, while 1,4-Dichlorobenzei	he was completely removed during the secondary biological	
	operators and effluent users.	monitoring or VOCs in wastewater	treatment plants is required to protect the environment,	
	Keywords: Kabd wastewater plant	; Benzene; Cancer; Hydrocarbon		

Day 3					
	Session 3: Wastewater Treatment - Industrial				
14	Removal of dye from textile effluent using Saccharomyces Cerevisiae	Mahalakshmi Mathivanan	Assistant Professor, School of Civil Engineering, SASTRA University Corresponding Author: mahalakshmi@civil.sastra.edu		
	Abstract				
	Due to the breakdown products of dyes, their disposal into the environment causes considerable damage and is hazardous to various				
	aquatic organisms. Bacteria, fungi, cellular membrane, and other absorbents can be used in biological techniques. In this study, the				
	potential of Saccharomyces Cerevisiae in the decolorization of Congo red dye was investigated. The impact of various conditions				
	on concentration, time, and pH in that study was conducted in order to determine the ideal condition for maximum decolorization.				
	The greatest wavelength was obser	rved in 496.93 on the UV Spectrum.	The greatest decolorization of 87.9% was reported at room		
	temperature for 30ppm(0.003g/10	0ml), which occurred after 18 hours. I	n the next experiment, a maximum decolorization of 96.88%		
	was recorded for 40ppm (0.004g/1	00ml) and pH 4 at 17 hours in rt, whi	ch is considered to be the optimal condition. The preceding		
	results demonstrate Saccharomyces Cerevisiae>s ability to degrade dyes.				
	Keywords: Saccharomyces Cerevisiae, Congo red dye, UV Spectrum, Dye degradation.				

15	Electrochemical reduction of Cr6+ ions from effluents by three dimensional cathode reactor	Kuppusamy Vaithilingam Selvakumar, Mani Jayakumar and Selvakumar Periyasamy	Department of Chemical Engineering, Dire Dawa University Institute of Technology, Dire Dawa, Ethiopia kvselvakumar73@gmail.com selvaa26kumar@gmail.com	
	Abstract			
	Chromium and its salts find an exte	ensive application in various industrie	es. The toxicity of chromium is a very well-known. Chromium	
	in its higher oxidation state is mo	re toxic than in the lower valency s	tate. Hexavalent chromium (Cr6+) can be easily reduced to	
	trivalent chromium electrochemically on a variety of cathodes over a wide range of concentration. With a view to develop a process			
	of electrochemical reduction for application in effluent treatment, the present investigation has been undertaken. Owing to t			
	very low concentration of Cr6+ in the effluent, the reaction is diffusion controlled. In order to enhance the mass transfer and hen			
	the conversion, at the electrode surface, a three dimensional electrode with a high space time yield has been used for the process.			
	The results of the investigations indicate that the rate of conversion depends on flow rate and an optimum flow rate of 120 Lh-1			
	is found to yield the maximum current as well as conversion efficiency for the reduction of Cr6+. The relation between variation in			
	concentration with time is found to	be exponential and mass transfer co	pefficient reaches a maximum at the optimum flow condition.	
	In conclusion, it is possible to reduc	ce cathodically hexavalent chromiun	n to trivalent chromium with the 100% conversion efficiency	
	using packed bed reactor system.			
	Keywords: Electrochemical reduction; Chromium ions; Three dimensional electrode; Electrochemical packed bed reactor			

16	Evaluation of Wastewater Quality Generated by Hospitals, which is Discharged into Public Sewage Network in Kuwait	A. Mydlarczyk, A. Al-Haddad, A. Abusam and M. E. Ahmed	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: mydlarczyk51@yahoo.com ahadad@kisr.edu.kw	
	Abstract	1		
	All Kuwaiti Hospitals discharging	their wastewater into public sewag	e network. Afterwards wastewater has been pumped into	
	municipal wastewater treatment u	nits in Kuwait. Scientists have studie	d quality of final effluent from sewage treatment plants and	
	they have found that effluent con	tains significant amount of pharmac	eutically active compounds, which are danger, if effluent is	
	applied for irrigation purposes. In	the study, samples of wastewater fro	om four Kuwaiti hospitals (Al-Sabah, Al-Razi, Maternity and	
	Chest Diseases) were collected on	the weekly basis. There was measure	ments of the following parameters in the field: temperature,	
	pH, electrical conductivity, dissol	ved oxygen and oxy-redox potentia	I. Besides them, the following parameters were analyzed	
	in Sulaibiya Research Plant (chem	ical laboratory): physical - total susp	pended solids (TSS), chemical - total dissolved solids (TDS),	
	alkalinity, organic compounds as c	hemical oxygen demand (COD) and I	biochemical oxygen demand (BOD5) as well as total organic	
	carbon (TOC). Moreover, other chemical parameters were tested like: ammonia nitrogen, organic nitrogen, total nitrogen, tota			
	phosphate, sulfates, sulfides, surfactants and heavy metals concentration. There was extra analyses of antibiotics (five the most			
	popular antibiotics in Kuwait). Mic	robiological laboratory of KISR in Sh	uwaikh determinate concentration of total coliform, faecal	
	coliform and salmonella. Moreover	r, concentration of radioactive eleme	nts was investigated in ELSRC laboratories of KISR, to check	
	presence of radioactive materials i	n the hospital wastewater. It was fou	nd that wastewater from Al-Sabah hospital usually contains	
	isotope of iodine (123 and 131) w	vith concentration between 15 – 50	$\mu\text{g/l.}$ The results proved that hospital wastewater exceeds	
	parameter values fixed by KEPA for	wastewater, which can be dumped to	public sewage network. In accordance with obtained quality	
	data, there is recommendation fo	r construction of wastewater treatm	nent units, beside each hospital, to avoid pharmaceutically	
	active compounds in final effluent	s of municipal wastewater treatmen	it plants.	
	Keywords: analysis, antibiotics, h	ospital wastewater, radioactivity, tr	eatment of wastewater	

17	Efficacy of Nanoparticles in Removing Targeted Bacteria from Wastewater	Dhanu Radha. S.V.V, A. Akber & Chidambaram. S	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: vdhanuradha@kisr.edu.kw	
	Abstract			
	Nanoparticles are extremely small	particles that are undetectable by th	e naked eye. They range in size from 1 to 100 nanometers and	
	can exhibit significantly different pl	hysical and chemical properties. The	erefore, they are used in a multitude of applications. One of the	
	prime applications of nanoparticle	s is their proven ability to remove m	icrobes from polluted media. Therefore, they could be used in	
	the removal of pathogens from efflu	uent wastewater in treatment plants	s that fail to efficiently remove such pollutants by conventional	
	disinfection treatment methods. H	owever, removing pollutants from v	vaste water has proven to be a formidable challenge. With this	
	paradigm in mind, a study was dev	veloped to synthesize and utilize n	anoparticles for the removal of specific pathogenic bacterial	
	groups from waste water. Hence, th	ne study focused on the extraction	of Curcumin from turmeric powder and subsequent synthesis	
	of nanoparticles using the precursor Zinc acetate in an eco-friendly manner. The synthesized nano Curcumin Zinc (II) complex			
	characterized by Ultra Violet Spectroscopy, H1 and C13 Nuclear Magnetic Resonance Spectroscopy, Fourier Transformation-Infra			
	Red Spectroscopy and X-ray diffra	ction. The Complex's morphology v	vas determined using Scanning Electron Microscopy and the	
	elemental composition using Energ	gy Dispersive X rays. The complex fo	rmation was confirmed by the above techniques and observed	
	with an average size of 68.2nm. Di	fferent proportions of the synthetic	c nano complex were added and optimized for the removal of	
	targeted bacteria in waste water. T	he study findings proved that synth	esized nano Curcumin Zinc (II) complex had a noticeable anti-	
	bacterial effect as it was able to ren	nove with 100% efficiency, the targ	eted bacteria such as Total Coliform, E.coli, Fecal Coliform and	
	Salmonella from waste water in 1:1	ratio and 1 in 100ml and 2 in 100r	nl diluted samples.	

Keywords: Waste water, disinfection, pathogens, synthesis, bacteria.

	Day 4			
		Session 4: Onsite Wastewater T	reatment	
18	Multi-criteria Assessment of Onsite Packaged Wastewater Treatment Systems	Mohd Elmuntasir Ahmed, A. Al- Matouq, M. Khajah, H. Abdullah	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: miahmed@kisr.edu.kw	
	Abstract			
	Onsite wastewater treatment systems and small scale packaged wastewater treatment plants have been used on a large scale in			
	developing and developed countries where centralized sewerage facilities are not feasible. Generally, onsite systems continuously work under large variations in both quantity and quality of the influent wastewater. Therefore, their suitability need to be assessed			
	before installation and operation t	o ensure their suitability and sustai	nability. The aim of this paper is to define a set of context	
	specific criteria to assist in the se	lection of the best onsite wastewa	ter treatment system and to breakdown these criteria into	
	measureable parameters. Further	more, the developed multi-criteria	l assessment tool was validated using the results of the	
	performance monitoring of a selected wastewater treatment system. This work is important since the selection of onsite systems, in many cases, is done based on declared performance by the supplier and the costs involved.			
	Keywords: packaged wastewater treatment systems, onsite wastewater treatment, wastewater reuse, wastewater treatment assessment			

19	Performance Evaluation of Commercial Package Systems used in Kuwait for On-Site Treatment and Reuse of Domestic Wastewater	H. Abdullah, A. Abusam, M. E. Ahmad and R. AlYaseen	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: hsafar∂kisr.edu.kw			
	Abstract					
	The wastewater management scheme of Kuwait consists of a huge centralized sewerage system that transport all generated wastewater for treatment at central municipal wastewater treatment plants. However, there are some remote sites that are stil not connected to the public sewerage system. In such sites, on-site systems (conventional septic tank or package systems) are commonly used. The study aims at carrying out technological appraisal and performance assessment of the on-site package systems					
	commonly sold in Kuwait's market. Specifically, two on-site wastewater treatment package systems will be technically appraised and					
	their actual performance will be determined. Further, the suitability of their effluent for agricultural reuse will be checked. This study assessed the performance of two package systems used in Kuwait for on-site wastewater treatment and reuse. Wastewater samples were collected weekly for five months from influent and effluent streams of two package systems located at Ahmadi and Kadhmah areas of Kuwait. Results of laboratory analysis indicated that effluent of both systems met the standards of Kuwait Public Authority for Environment (KEPA). However, Obtained results have also showed that pollutants' removal efficiencies for both systems were highly fluctuating. Keywords: Wastewater, Treatment, Reuse, Onsite systems, Package systems.					

20	Assessment of Removal Salmonella Bacteria from Domestic Wastewater Biological Treatment Unit	F. Dashti, A. Al-Haddad, G. Ahmad and E. Ibrahim	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: fmdashti@kisr.edu.kw			
	Abstract					
	Recently Water Research Center (WRC) installed wastewater biological treatment unit for Kuwait Institute for Scientific Research					
	(KISR) for treatment of wastewater discharging from WRC and Hydraulic buildings. The biological treatment unit were built for a					
	purpose of using treated wastewater for irrigation activates inside KISR. The treatment unit consists of five stages, which is influent					
	(raw sewage), primary settling tank, aeration tank, secondary settling tank and effluent. The aim of the research study is to evaluate					
	the present of pathogenic salmonella bacteria before and after passing each treatment stage. Total of 44 wastewater samples were					
	collected during December 2021 to January 2022, from four stages of the treatment unit including influent, primary settling tank,					
	secondary settling tank and effluent. The collected samples were analyzed for the present of pathogenic salmonella bacteria. The					
	preliminary laboratory results of water samples revealed that the counts of the salmonella bacteria for influent were ranged between					
	24000 to 96000 cfu/100ml, their counts in primary settling tank were ranged between 21 to 170 cfu/100ml, while their counts was					
	reduced in secondary settling tank and ranged between 4 to 48 cfu/100ml and finally, their counts in effluent were ranged between					
	0.0 to 11 cfu/100ml. The study recommended periodic monitoring for analyses of wastewater quality of biological treatment unit.					
	Keywords: Raw wastewater, Laboratory results, Treatment stages and Effluent					

21	Assessment of Kuwait's Wastewater Treatment Plants Emissions	Ashraf A Ramadan	Water Research Center Kuwait Institute for Scientific Research, Kuwait E-mail: miahmed@kisr.edu.kw		
	Abstract As of 2016, Kuwait had six domest the sixth employ reverse-osmosis. relies on gravity as the driving force design treatment capacity of Kuwai several domestic, commercial and when developing an emission inve- emission inventory following a bot of the project, the Intergovernmen emissions resulting from the WWTF specific activity data, was used. Lac calculated. The calculated emission and 0.75% of the national emission invited attention on the importance	ic wastewater treatment plants (WW Wastewater flows in a large network of e of the flow and the rest is pressuria it's WWTPs is planned to increase by f industrial processes, wastewater is y entory. Kuwait Institute for Scientific tom-up approach and this article ac intal Panel for Climate Change (IPCC) Ps. Tier 2 method, which is considered ex of information on industrial wastew ons from WWTPs for 2016 were 1.80 ns for these two compounds. The hig ex of employing suitable CH4 recover	/TPs), five of which employ tertiary treatment method while of 8,200 km long pipelines, the majority of which, i.e. 97.6%, zed. Pipelines diameters range between 0.15 to 2.25 m. The 16% by 2030 compared to the value in 2015. Resulting from yet another emissions source which needs to be considered Research (KISR) has developed the country's first national dresses the part related to WWTPs emissions. For this part) methodology was adopted to calculate the CH4 and N2O I and improved version of Tier 1 due to its reliance on country water meant only emissions from domestic wastewater were 0E+08 for CH4 and 6.25E+04 for N2O, equivalent to 40.3% ph contribution of WWTP to the national CH4 emissions has by mechanisms at these facilities.		
	Keywords: Methane, Greenhouse gases, Climate change, tertiary treatment				

